cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374936 Maximum number of squares covered (i.e., attacked) by 6 independent (i.e., nonattacking) queens on an n X n chessboard.

This page as a plain text file.
%I A374936 #42 Oct 30 2024 08:07:26
%S A374936 36,49,64,81,100,121,142,165,186,209,231,255,277
%N A374936 Maximum number of squares covered (i.e., attacked) by 6 independent (i.e., nonattacking) queens on an n X n chessboard.
%e A374936 Example for 12 X 12: There are 2 cells marked 'o' or uncovered thus a(12) = 12 * 12 - 2 = 142.
%e A374936   x x x x x x x x x x x Q
%e A374936   x x x x x x x x x x x x
%e A374936   x x x x x x x x x x x x
%e A374936   x x x Q x x x x x x x x
%e A374936   x x x x x Q x x x x x x
%e A374936   x x x x x x x Q x x x x
%e A374936   x x x x Q x x x x x x x
%e A374936   x x x x x x Q x x x x x
%e A374936   o x x x x x x x x x x x
%e A374936   x x x x x x x x x x x x
%e A374936   x x x x x x x x x x x x
%e A374936   x x x x x x x x o x x x
%e A374936 From _Christian Sievers_, Sep 08 2024: (Start)
%e A374936 Example for 14 X 14 with 186 attacked squares (unattacked ones marked with "+"):
%e A374936   . . Q . . . . . . . . . . .
%e A374936   . . . . . . . . . Q . . . .
%e A374936   . . . . . . . . . . . . . +
%e A374936   . + . . . . . . . . . . . .
%e A374936   . . . Q . . . . . . . . . .
%e A374936   . . . . . . . . . . . . . .
%e A374936   . . . . . . . . . . . . . .
%e A374936   . . . . . . . . . . . . Q .
%e A374936   . + . . . . . . . . . . . .
%e A374936   . . . . . . . . . . . . . +
%e A374936   . . . . . . Q . . . . . . .
%e A374936   . + . . + . . . . . . + . .
%e A374936   . . . . . + . . . . + . . +
%e A374936   Q . . . . . . . . . . . . .
%e A374936 (End)
%Y A374936 Column 6 of A376732.
%Y A374936 Cf. A075324, A047461, A374933, A375116, A374933, A374934, A374935, A374937, A374938.
%K A374936 nonn,more
%O A374936 6,1
%A A374936 _John King_, Aug 08 2024
%E A374936 a(14) corrected and a(15) confirmed by _Christian Sievers_, Sep 08 2024
%E A374936 a(16)-a(18) added using data from _Mia Muessig_ by _Andrew Howroyd_, Oct 05 2024