This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374941 #36 Aug 18 2024 11:57:03 %S A374941 0,0,0,2,0,5,0,4,3,7,0,12,0,9,8,8,0,13,0,16,10,13,0,28,5,15,6,20,0,30, %T A374941 0,16,14,19,12,40,0,21,16,36,0,36,0,28,19,25,0,64,7,19,20,32,0,32,16, %U A374941 44,22,31,0,90,0,33,23,32,18,48,0,40,26,42,0,112,0,39 %N A374941 a(n) = (sum of proper prime factors of n) + Sum_{d = proper composite factor of n} a(d). %H A374941 Michael S. Branicky, <a href="/A374941/b374941.txt">Table of n, a(n) for n = 1..10000</a> %F A374941 a(p) = 0, iff p = 1 or a prime number. %F A374941 a(p^k) == 2^(k-2)*p for p prime, k > 1. - _Michael S. Branicky_, Aug 01 2024 %e A374941 For n=24, the tree of recurrences "a(d)" is %e A374941 24 %e A374941 / / / \ \ \ %e A374941 2 3 4 6 8 12 %e A374941 / / \ / \ \ \ \ \ %e A374941 2 2 3 2 4 2 3 4 6 %e A374941 / / / \ %e A374941 2 2 2 3 %e A374941 a(24) = 2 + 3 + a(4) + a(6) + a(8) + a(12) %e A374941 = 5 + 2 + 2 + 3 + 2 + a(4) + 2 + 3 + a(4) + a(6) %e A374941 = 14 + 2 + 5 + 2 + 2 + 3 %e A374941 = 28 %o A374941 (Python) %o A374941 from sympy import divisors, isprime %o A374941 def a(n): return sum(di if isprime(di) else a(di) for di in divisors(n)[1:-1]) %o A374941 print([a(n) for n in range(1, 75)]) # _Michael S. Branicky_, Jul 24 2024 %Y A374941 Cf. A371075 (fixed points). %K A374941 nonn %O A374941 1,4 %A A374941 _Tanmaya Mohanty_, Jul 24 2024 %E A374941 More terms from _Michael S. Branicky_, Jul 24 2024