This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374948 #22 Aug 04 2025 08:56:13 %S A374948 6,1,9,6,1,5,2,4,2,2,7,0,6,6,3,1,8,8,0,5,8,2,3,3,9,0,2,4,5,1,7,6,1,7, %T A374948 1,0,0,8,2,8,4,1,5,7,6,1,4,3,1,1,4,1,8,8,4,1,6,7,4,2,0,9,3,8,3,5,5,7, %U A374948 9,9,0,5,0,7,2,6,4,0,0,1,1,1,2,4,3,4,3 %N A374948 Decimal expansion of the Euclidean length of the minimum Steiner tree joining all the vertices of a unit cube. %C A374948 The 1994 Bridge's paper entitled "Minimal Steiner Trees for Three Dimensional Networks" (see Links) suggested an optimal strategy to solve the minimum Steiner tree problem for the unit cube {0,1}^3, and the total length of the provided Steiner Tree is 1 + 3*sqrt(3). %C A374948 Also the surface area of a gyroelongated square pyramid (Johnson solid J_10) with unit edges. - _Paolo Xausa_, Aug 04 2025 %H A374948 R. Bridges, <a href="https://www.jstor.org/stable/3618571">Minimal Steiner Trees for Three Dimensional Networks</a>, Math. Gaz., 78 (1994), 157-162. %H A374948 Math Overflow, <a href="https://mathoverflow.net/questions/473016/joining-the-2k-points-of-0-1-k-with-the-shortest-tree">Joining the 2^k points of {0,1}^k with the shortest tree</a>. %H A374948 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/835759/steiner-tree-problem-in-3d">Steiner tree problem in 3D</a>. %H A374948 J. M. Smith, R. Weiss, and M. Patel, <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230260411">An O(N2) Heuristic for Steiner Minimal Trees in E3</a>, Networks 26 (1995), 273-289. %H A374948 B. Toppur and J. M. A. Smith, <a href="https://link.springer.com/article/10.1007/s10852-004-6390-x">A Sausage Heuristic for Steiner Minimal Trees in Three-Dimensional Euclidean Space</a>, J. Math. Modelling and Algorithms, 4 (2005), 199-217. %H A374948 Wikipedia, <a href="https://en.wikipedia.org/wiki/Gyroelongated_square_pyramid">Gyroelongated square pyramid</a>. %F A374948 Equals 3*sqrt(3) + 1. %F A374948 Equals A010482(n) for any n >= 2 and a(1) = A010482(1) + 1. %e A374948 6.1961524227066318805823390245176171008284157614311418841674209383... %t A374948 RealDigits[3Sqrt[3]+1,10,87][[1]] (* _Stefano Spezia_, Jul 25 2024 *) %Y A374948 Cf. A002194, A010482, A374148, A374260. %Y A374948 Essentially the same as A178809, A176532 and A010482. %K A374948 nonn,cons,easy %O A374948 1,1 %A A374948 _Marco RipĂ _, Jul 24 2024