cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374952 Decimal expansion of 7*zeta(3)/16 + Pi^2*log(2)/8, where zeta is the Riemann zeta function.

This page as a plain text file.
%I A374952 #76 Aug 05 2024 08:33:23
%S A374952 1,3,8,1,0,3,5,9,5,3,1,1,4,4,6,2,0,6,7,9,6,8,3,2,0,3,3,9,9,0,5,5,2,1,
%T A374952 3,7,9,8,7,2,1,5,3,8,8,3,9,2,2,4,5,7,4,5,0,1,9,9,6,3,5,2,8,6,5,2,6,6,
%U A374952 9,3,8,6,9,8,9,6,8,5,8,0,6,7,7,9,4,8,1,8,2,0,7,9,3,9,7,3,3,3,4,8,1,5,6
%N A374952 Decimal expansion of 7*zeta(3)/16 + Pi^2*log(2)/8, where zeta is the Riemann zeta function.
%F A374952 Equals the absolute value of Integral_{x=0..Pi/2} x*log(cos x) dx.
%F A374952 Equals (Pi/2) * A173623 - A173624.
%e A374952 1.38103595311446206796832033990552137987215388392245...
%p A374952 7*Zeta(3)/16 + Pi^2*log(2)/8 ; evalf(%) ;
%t A374952 RealDigits[7*Zeta[3]/16 + Pi^2*Log[2]/8, 10, 120][[1]] (* _Amiram Eldar_, Aug 05 2024 *)
%Y A374952 Cf. A173623, A173624.
%K A374952 nonn,cons
%O A374952 1,2
%A A374952 _R. J. Mathar_, Aug 04 2024