cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374955 Decimal expansion of Muder's 1993 lower bound for the volume of any Voronoi polyhedron defined by a packing of unit spheres in the Euclidean 3-space.

This page as a plain text file.
%I A374955 #17 Jul 28 2024 00:14:56
%S A374955 5,4,1,8,4,8,2,9,6,2,6,6,0,7,2,3,2,9,4,1,4,4,5,7,2,5,2,0,9,3,2,4,6,4,
%T A374955 5,2,7,8,1,8,3,0,9,5,5,8,9,9,8,2,2,5,7,2,5,6,3,7,3,1,6,4,4,7,5,3,5,9,
%U A374955 9,8,3,8,9,9,2,1,6,9,9,6,0,3,8,8,7,9,8,6,2,8
%N A374955 Decimal expansion of Muder's 1993 lower bound for the volume of any Voronoi polyhedron defined by a packing of unit spheres in the Euclidean 3-space.
%C A374955 See A374753 (the dodecahedral conjecture) for an improved bound.
%H A374955 Douglas J. Muder, <a href="https://doi.org/10.1007/BF02573984">A New Bound on the Local Density of Sphere Packings</a>, Discrete & Computational Geometry, Vol. 10, 1993, pp. 351-375.
%F A374955 Equals 13*beta, where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Theorem in Muder (1993), p. 352.
%F A374955 Equals (4/3)*Pi/A374956.
%e A374955 5.4184829626607232941445725209324645278183095589982...
%t A374955 Module[{beta, r, s},
%t A374955   s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
%t A374955   beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
%t A374955   r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
%t A374955   RealDigits[13*beta, 10, 100][[1,1]]]
%Y A374955 Cf. A374771, A374753, A374956 (density).
%K A374955 nonn,cons
%O A374955 1,1
%A A374955 _Paolo Xausa_, Jul 25 2024