cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374956 Decimal expansion of Muder's 1993 upper bound for the density of packing of unit spheres in the Euclidean 3-space.

This page as a plain text file.
%I A374956 #16 Jul 27 2024 03:58:28
%S A374956 7,7,3,0,5,5,8,9,6,5,7,6,9,0,8,8,9,0,5,5,0,2,1,7,5,5,7,0,1,5,2,9,0,4,
%T A374956 7,3,0,8,2,6,2,4,5,1,7,5,2,1,6,2,4,9,3,4,1,8,3,0,4,3,9,6,5,6,2,4,8,8,
%U A374956 9,2,7,5,9,6,8,6,5,0,8,8,8,0,5,0,9,1,0,5,2,5
%N A374956 Decimal expansion of Muder's 1993 upper bound for the density of packing of unit spheres in the Euclidean 3-space.
%C A374956 See A374772 for an improved bound.
%H A374956 Douglas J. Muder, <a href="https://doi.org/10.1007/BF02573984">A New Bound on the Local Density of Sphere Packings</a>, Discrete & Computational Geometry, Vol. 10, 1993, pp. 351-375.
%F A374956 Equals 4*Pi/(39*beta), where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Corollary in Muder (1993), p. 352.
%F A374956 Equals (4/3)*Pi/A374955.
%e A374956 0.77305589657690889055021755701529047308262451752162...
%t A374956 Module[{beta, r, s},
%t A374956   s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
%t A374956   beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
%t A374956   r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
%t A374956   RealDigits[4*Pi/(39*beta), 10, 100][[1,1]]]
%Y A374956 Cf. A374772, A374837, A374955 (volume).
%K A374956 nonn,cons
%O A374956 0,1
%A A374956 _Paolo Xausa_, Jul 25 2024