cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374972 Decimal expansion of the sagitta of a regular heptagon with unit side length.

Original entry on oeis.org

1, 1, 4, 1, 2, 1, 7, 3, 7, 1, 9, 5, 0, 7, 4, 9, 6, 9, 0, 3, 8, 8, 0, 5, 6, 8, 1, 0, 3, 0, 5, 0, 7, 3, 9, 1, 3, 6, 9, 3, 9, 0, 8, 4, 0, 4, 9, 0, 1, 7, 6, 3, 1, 8, 9, 8, 9, 8, 4, 4, 4, 5, 9, 8, 0, 1, 9, 1, 2, 4, 2, 7, 8, 5, 6, 9, 4, 0, 9, 3, 9, 4, 5, 7, 3, 4, 6, 9, 3, 5
Offset: 0

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			0.114121737195074969038805681030507391369390840490...
		

Crossrefs

Cf. A374957 (circumradius), A374971 (apothem), A178817 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A375069 (hexagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).
Cf. A343059.

Programs

Formula

Equals tan(Pi/14)/2 = A343059/2.
Equals A374957 - A374971.

A374971 Decimal expansion of the apothem (inradius) of a regular heptagon with unit side length.

Original entry on oeis.org

1, 0, 3, 8, 2, 6, 0, 6, 9, 8, 2, 8, 6, 1, 6, 8, 2, 8, 3, 5, 8, 1, 7, 6, 9, 4, 3, 0, 7, 4, 2, 9, 2, 0, 1, 6, 5, 3, 5, 2, 8, 6, 0, 1, 0, 3, 3, 1, 2, 9, 8, 4, 2, 6, 2, 0, 4, 1, 7, 0, 8, 6, 8, 8, 4, 3, 1, 5, 1, 4, 2, 4, 3, 5, 3, 2, 2, 9, 8, 8, 5, 8, 7, 3, 2, 2, 0, 8, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			1.0382606982861682835817694307429201653528601033...
		

Crossrefs

Cf. A374957 (circumradius), A374972 (sagitta), A178817 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/7)/2 = A178818/2.
Equals 1/(2*tan(Pi/7)) = 1/(2*A343058).
Equals A374957*cos(Pi/7) = A374957*A073052.
Equals A374957 - A374972.
Largest of the 6 real-valued roots of 448*x^6 -560*x^4 +84*x^2 -1 =0. - R. J. Mathar, Aug 29 2025

A375151 Decimal expansion of the circumradius of a regular 9-gon with unit side length.

Original entry on oeis.org

1, 4, 6, 1, 9, 0, 2, 2, 0, 0, 0, 8, 1, 5, 4, 3, 6, 2, 6, 1, 1, 6, 3, 7, 7, 2, 0, 6, 6, 8, 3, 1, 4, 5, 8, 5, 1, 9, 3, 6, 7, 5, 2, 8, 3, 0, 7, 5, 9, 4, 6, 2, 2, 4, 0, 8, 5, 5, 3, 1, 8, 4, 9, 3, 1, 7, 7, 6, 7, 2, 5, 8, 1, 3, 9, 9, 6, 7, 5, 9, 0, 4, 9, 1, 9, 6, 2, 7, 7, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2024

Keywords

Examples

			1.46190220008154362611637720668314585193675283...
		

Crossrefs

Cf. A375152 (apothem), A375153 (sagitta), A256853 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A374957 (heptagon), A285871 (octagon), A001622 (10-gon), A375190 (11-gon), A188887 (12-gon)

Programs

Formula

Equals csc(Pi/9)/2 = A121602/2.
Equals 1/(2*sin(Pi/9)) = 1/A272488.
Equals A375152/cos(Pi/9) = A375152/A019879.
Equals A375152 + A375153.
Largest of the 6 real-valued roots of 3*x^6-9*x^4+6*x^2-1=0. - R. J. Mathar, Aug 29 2025

A375190 Decimal expansion of the circumradius of a regular 11-gon with unit side length.

Original entry on oeis.org

1, 7, 7, 4, 7, 3, 2, 7, 6, 6, 4, 4, 2, 1, 1, 1, 6, 6, 2, 8, 5, 6, 8, 3, 1, 9, 6, 1, 1, 6, 8, 9, 7, 5, 8, 4, 6, 1, 0, 5, 3, 7, 6, 3, 8, 2, 1, 2, 3, 0, 5, 1, 0, 6, 9, 5, 5, 2, 5, 8, 2, 9, 4, 3, 1, 5, 7, 3, 0, 0, 4, 9, 5, 8, 2, 6, 1, 6, 6, 9, 5, 0, 0, 1, 7, 7, 9, 5, 9, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Examples

			1.774732766442111662856831961168975846105376382123...
		

Crossrefs

Cf. A375191 (apothem), A375192 (sagitta), A256854 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A374957 (heptagon), A285871 (octagon), A375151 (9-gon), A001622 (10-gon), A188887 (12-gon).
Cf. A272489.

Programs

Formula

Equals csc(Pi/11)/2.
Equals 1/(2*sin(Pi/11)) = 1/A272489.
Equals A375191/cos(Pi/11).
Equals A375191 + A375192.
Showing 1-4 of 4 results.