A374959 a(n) is the least k such that binomial(A349958(n), k) is a multiple of n.
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 3, 2, 3, 2, 1, 4, 2, 3, 1, 3, 1, 3, 2, 8, 1, 5, 1, 2, 2, 6, 1, 4, 2, 3, 2, 2, 1, 3, 1, 2, 4, 1, 4, 4, 1, 2, 6, 4, 1, 5, 1, 2, 2, 4, 5, 2, 1, 3, 1, 2, 1, 3, 3, 4, 3
Offset: 1
Keywords
Examples
For n = 12: the first multiple of 12 in Pascal's triangle appears in row 9; this row contains: 1, 9, 36, 84, 126, 126, 84, 36, 9, 1; the first multiple of 12 (36), appears at (0-based) index 2; so a(12) = 2.
Programs
-
PARI
a(n) = { my (r = [1 % n], j); for (i = 0, oo, if (vecmin(r, &j)==0, return (j-1), r = (concat(0, r) + concat(r, 0)) % n;);); }
-
Python
from math import comb def A374959(n): return next(k for j in range(n+1) for k in range(j+1) if not (comb(j,k) % n)) # Chai Wah Wu, Jul 30 2024