This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374960 #11 Jul 26 2024 08:57:43 %S A374960 0,5,6,7,11,18,20,25,39,52,61,96,104,157,176,199,206,210,279,326,333, %T A374960 339,369,380,397,411,426,473,542,576,743,860,898,921,961,970,993,1024, %U A374960 1043,1049,1100,1121,1176,1184,1193,1199,1206,1230,1253,1376,1380,1387,1435 %N A374960 Numbers k such that 2^k and 2^(k+1) have the same number of terms in their Zeckendorf representation (A007895). %C A374960 Numbers k such that A020908(k) = A020908(k+1). %C A374960 The corresponding values of A020908(k) are 1, 3, 3, 3, 6, 7, 8, 9, 18, 20, 28, 44, 37, ... . %H A374960 Amiram Eldar, <a href="/A374960/b374960.txt">Table of n, a(n) for n = 1..550</a> (terms below 10^5) %e A374960 0 is a term since the Zeckendorf representation of 2^0 = 1 is A014417(1) = 1, and the Zeckendorf representation of 2^1 = 2 is A014417(2) = 10, so A020908(0) = A020908(1) = 1. %e A374960 5 is a term since the Zeckendorf representation of 2^5 = 32 is A014417(32) = 1010100, and the Zeckendorf representation of 2^6 = 64 is A014417(64) = 100010001, so A020908(5) = A020908(6) = 3. %t A374960 z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* _Alonso del Arte_ at A007895 *) %t A374960 s[n_] := s[n] = z[2^n]; Select[Range[0, 1500], s[#] == s[# + 1] &] %o A374960 (PARI) A007895(n)=if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ _Charles R Greathouse IV_ at A007895 %o A374960 lista(kmax) = {my(z1 = A007895(1), z2); for(k = 1, kmax, z2 = A007895(2^k); if(z1 == z2, print1(k-1 , ", ")); z1 = z2);} %Y A374960 Cf. A007895, A014417, A020908, A353986. %Y A374960 A374961 is a subsequence. %K A374960 nonn,base %O A374960 1,2 %A A374960 _Amiram Eldar_, Jul 25 2024