cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374962 Numbers k such that the number of terms in the Zeckendorf representation of 2^k equals the binary weight of Fibonacci(k).

This page as a plain text file.
%I A374962 #17 Aug 17 2024 03:22:07
%S A374962 1,3,4,7,8,13,14,20,26,50,55,58,90,140,270,314,603
%N A374962 Numbers k such that the number of terms in the Zeckendorf representation of 2^k equals the binary weight of Fibonacci(k).
%C A374962 Numbers k such that A007895(A000079(k)) = A000120(A000045(k)), or equivalently A020908(k) = A011373(k).
%C A374962 The corresponding values of A020908(k) = A011373(k) are 1, 1, 2, 3, 3, 5, 6, 8, 9, 18, 22, 24, 33, 53, 106, 122, 232, ... .
%C A374962 a(18) > 63000, if it exists.
%C A374962 a(18) > 333333, if it exists. - _Lucas A. Brown_, Aug 13 2024
%H A374962 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A374962.py">Python program</a>.
%e A374962   n | k = a(n) | 2^k | A014417(2^k) | F(k) | A007088(F(k)) | Number of 1's
%e A374962   --+----------+-----+--------------+------+---------------+--------------
%e A374962   1 |        1 |   2 |           10 |    1 |             1 |             1
%e A374962   2 |        3 |   8 |        10000 |    2 |            10 |             1
%e A374962   3 |        4 |  16 |       100100 |    3 |            11 |             2
%e A374962   4 |        7 | 128 |   1010001000 |   13 |          1101 |             3
%e A374962   5 |        8 | 256 | 100001000010 |   21 |         10101 |             3
%t A374962 z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* _Alonso del Arte_ at A007895 *)
%t A374962 Select[Range[700], z[2^#] == DigitCount[Fibonacci[#], 2, 1] &]
%o A374962 (PARI) A007895(n)=if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ _Charles R Greathouse IV_ at A007895
%o A374962 is(k) = A007895(2^k) == hammingweight(fibonacci(k));
%Y A374962 Cf. A000045, A000079, A000120, A007088, A007895, A011373, A014417, A020908.
%K A374962 nonn,base,more
%O A374962 1,2
%A A374962 _Amiram Eldar_, Jul 25 2024