This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374975 #14 Oct 23 2024 09:26:54 %S A374975 2,15,131,1369,13842,129185,1104895,8750964,64714465,450686225, %T A374975 2976189422 %N A374975 Number of equivalence classes of lattice polygons contained in a square of side length n but not in a square of side length n-1. %H A374975 Gavin Brown and Alexander M. Kasprzyk, <a href="https://doi.org/10.1016/j.jsc.2012.07.001">Small polygons and toric codes</a>, J. Symbolic Comput. 51 (2013), pp. 55-62. %H A374975 Justus Springer, <a href="https://github.com/justus-springer/RationalPolygons.jl">RationalPolygons.jl (Version 1.0.0) [Computer software]</a>, 2024. %H A374975 Justus Springer and Martin Bohnert, <a href="https://arxiv.org/abs/2410.17244">Classifying rational polygons with small denominator and few interior lattice points</a>, arxiv:2410.17244 [math.CO], 2024. %H A374975 Justus Springer and Martin Bohnert, <a href="https://doi.org/10.5281/zenodo.13838476">Lattice subpolygons of a square with given sidelength (1.0.0) [Data set]</a>, 2024. %e A374975 For n = 1, only the square itself and the standard triangle are contained in the square, so a(1) = 2. %Y A374975 Cf. A187015, A322343, A371917. %K A374975 nonn,more %O A374975 1,1 %A A374975 _Justus Springer_, Jul 26 2024