cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374976 Odd k with p^k mod k != p for all primes p.

Original entry on oeis.org

1, 9, 27, 63, 75, 81, 115, 119, 125, 189, 207, 209, 215, 235, 243, 279, 299, 319, 323, 387, 407, 413, 423, 515, 517, 531, 535, 551, 567, 575, 583, 611, 621, 623, 667, 675, 707, 713, 729, 731, 747, 767, 779, 783, 799, 815, 835, 851, 869, 893, 899, 917, 923, 927
Offset: 1

Views

Author

Francois R. Grieu, Jul 26 2024

Keywords

Comments

Alternatively: 1, and odd composites not a pseudoprime to any prime base.
The sequence contains no primes, no pseudoprimes to any prime base (A001567, A005935, A005936, A005938, A020139, A020141...), and no Carmichael numbers (A002997).

Examples

			k=3 (resp. 5, 7) is not in the sequence because for prime p=2 it holds p^k mod k = 2 which is p.
k=9 is in the sequence because for prime p=2 (resp. 3, 5, 7) it holds p^k mod k = 8 (resp. 0, 8, 1) which is not p, and for all other primes p it holds p>=k therefore p^k mod k can't be p.
		

Crossrefs

Programs

  • Mathematica
    Cases[Range[1, 930, 2], k_/; (For[p=2, p=k)]