This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374979 #25 Sep 20 2024 06:22:29 %S A374979 0,0,0,0,0,1,18,159,942,4281,16050,51932,149532,391524,947246,2143677, %T A374979 4581204,9316195,18138636,33984912,61534652,108055425,184582014, %U A374979 307515038,500798058,798762453,1249917936,1921788036,2907159804,4332046200,6365441400,9232216725 %N A374979 a(n) = Sum_{i+j+k+l+m+r=n, i,j,k,l,m,r >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m)*sigma(r). %C A374979 6-fold convolution of A000203. %C A374979 Convolution of A000203 and A374978. %C A374979 a(n) = Sum_{i=1..n-1} A000203(i)*A374978(n-i). %C A374979 a(n) = Sum_{i=1..n-2} A000385(i)*A374977(n-i-1). %C A374979 a(n) = Sum_{i=1..n-1} A374951(i)*A374951(n-i). %C A374979 a(n) = Sum_{i+j+k=n-3, i,j,k>=1} A000385(i)*A000385(j)*A000385(k). %C A374979 Column k=6 of A319083. %C A374979 In general, if the sequence "a" is a k-fold convolution of A000203, then Sum_{k=1..n} a(k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - _Vaclav Kotesovec_, Sep 20 2024 %H A374979 Alois P. Heinz, <a href="/A374979/b374979.txt">Table of n, a(n) for n = 1..10000</a> %F A374979 Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / 22348298649600. - _Vaclav Kotesovec_, Sep 20 2024 %p A374979 b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), %p A374979 `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q-> %p A374979 add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A374979 end: %p A374979 a:= n-> b(n, 6): %p A374979 seq(a(n), n=1..55); # _Alois P. Heinz_, Jul 26 2024 %o A374979 (Python) %o A374979 from functools import lru_cache %o A374979 from sympy import divisor_sigma %o A374979 def A374979(n): %o A374979 @lru_cache(maxsize=None) %o A374979 def g(x): %o A374979 f = factorint(x+1).items() %o A374979 return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*x)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12 %o A374979 return sum(g(i)*g(j)*g(n-3-i-j) for i in range(1,n-4) for j in range(1,n-i-3)) %Y A374979 Cf. A000203, A000385, A319083, A374951, A374977, A374978. %K A374979 nonn %O A374979 1,7 %A A374979 _Chai Wah Wu_, Jul 26 2024