cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374985 Array read by antidiagonals: T(n,k) is the number of n X k matrices whose values cover an initial interval of positive integers and whose rows and columns have values which are strictly increasing.

This page as a plain text file.
%I A374985 #23 Nov 20 2024 09:47:38
%S A374985 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,11,11,1,1,1,1,45,197,45,1,1,1,1,
%T A374985 197,4593,4593,197,1,1,1,1,903,126289,732963,126289,903,1,1,1,1,4279,
%U A374985 3888343,155242003,155242003,3888343,4279,1,1,1,1,20793,130016393,40007492715,289599115433,40007492715,130016393,20793,1,1
%N A374985 Array read by antidiagonals: T(n,k) is the number of n X k matrices whose values cover an initial interval of positive integers and whose rows and columns have values which are strictly increasing.
%C A374985 T(n,k) is the number of normal generalized Young tableaux with all rows and columns strictly increasing whose shape is a rectangle of size n X k (cf. A299968). - _Ludovic Schwob_, Nov 18 2024
%H A374985 Andrew Howroyd, <a href="/A374985/b374985.txt">Table of n, a(n) for n = 0..230</a>
%H A374985 R. A. Sulanke, <a href="https://doi.org/10.37236/1807">Generalizing Narayana and Schroeder Numbers to Higher Dimensions</a>, Electron. J. Combin. 11 (2004), Research Paper 54.
%F A374985 T(n,k) = T(k,n).
%e A374985 Array begins:
%e A374985 =====================================================================
%e A374985 n/k | 0 1   2       3           4               5               6 ...
%e A374985 ----+----------------------------------------------------------------
%e A374985   0 | 1 1   1       1           1               1               1 ...
%e A374985   1 | 1 1   1       1           1               1               1 ...
%e A374985   2 | 1 1   3      11          45             197             903 ...
%e A374985   3 | 1 1  11     197        4593          126289         3888343 ...
%e A374985   4 | 1 1  45    4593      732963       155242003     40007492715 ...
%e A374985   5 | 1 1 197  126289   155242003    289599115433 723253222084867 ...
%e A374985   6 | 1 1 903 3888343 40007492715 723253222084867 ...
%e A374985 ...
%e A374985 The T(2,3) = 11 matrices are:
%e A374985   [1 2 3]  [1 2 3]  [1 2 3]  [1 2 3]  [1 2 4]  [1 2 4]
%e A374985   [2 3 4]  [2 4 5]  [3 4 5]  [4 5 6]  [2 3 5]  [3 4 5]
%e A374985 .
%e A374985   [1 2 4]  [1 2 5]  [1 3 4]  [1 3 4]  [1 3 5]
%e A374985   [3 5 6]  [3 4 6]  [2 4 5]  [2 5 6]  [2 4 6]
%o A374985 (PARI) \\ See PARI link in A374514 for program code.
%o A374985 for(n=0, 7, print(vector(7, k, A374985(n, k-1))))
%Y A374985 Columns k=1..4 are A000012, A001003, A105124, A374985.
%Y A374985 Main diagonal is A374514.
%Y A374985 Cf. A060854 (case all values also distinct), A299968.
%K A374985 nonn,tabl
%O A374985 0,13
%A A374985 _Andrew Howroyd_, Sep 16 2024