This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374989 #14 Jul 27 2024 12:33:09 %S A374989 1,1,1,1,1,1,12,12,3,9,720,720,160,160,35,189,189,189,145152,145152, %T A374989 7257600,12800,275,275,136857600,684288000,4343625,17875,875875, %U A374989 875875,125536739328,125536739328,15324309,637,709689344,9052160000,18104320000,18104320000,2624375 %N A374989 Square root of largest unitary square divisor of n!. %C A374989 Unitary analog of A055772. %C A374989 a(n) is even if and only if n > 1 and is in A006364. %H A374989 Amiram Eldar, <a href="/A374989/b374989.txt">Table of n, a(n) for n = 0..1118</a> %F A374989 a(n) = sqrt(A374988(n)). %F A374989 a(n) = A071974(n!). %t A374989 f[p_, e_] := If[EvenQ[e], p^(e/2), 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40, 0] %o A374989 (PARI) a(n) = {my(f = factor(n!)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2)));} %o A374989 (Python) %o A374989 from math import prod %o A374989 from itertools import count, islice %o A374989 from collections import Counter %o A374989 from sympy import factorint %o A374989 def A374989_gen(): # generator of terms %o A374989 c = Counter() %o A374989 for i in count(0): %o A374989 c += Counter(factorint(i)) %o A374989 yield prod(p**(e>>1) for p, e in c.items() if e&1^1) %o A374989 A374989_list = list(islice(A374989_gen(),30)) # _Chai Wah Wu_, Jul 27 2024 %Y A374989 Cf. A006364, A055772, A071974, A374988. %K A374989 nonn %O A374989 0,7 %A A374989 _Amiram Eldar_, Jul 26 2024