cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374996 Square array read by antidiagonals: T(n,k) is the total cost when the elements of the k-th composition (in standard order) are requested from a self-organizing list initialized to (1, 2, 3, ...), using the move-ahead(n) updating strategy; n, k >= 0.

This page as a plain text file.
%I A374996 #23 Aug 04 2024 08:16:14
%S A374996 0,1,0,2,1,0,2,2,1,0,3,2,2,1,0,3,3,2,2,1,0,3,4,3,2,2,1,0,3,3,4,3,2,2,
%T A374996 1,0,4,3,3,4,3,2,2,1,0,4,4,3,3,4,3,2,2,1,0,4,4,4,3,3,4,3,2,2,1,0,4,3,
%U A374996 5,4,3,3,4,3,2,2,1,0,4,5,3,5,4,3,3,4,3,2,2,1,0
%N A374996 Square array read by antidiagonals: T(n,k) is the total cost when the elements of the k-th composition (in standard order) are requested from a self-organizing list initialized to (1, 2, 3, ...), using the move-ahead(n) updating strategy; n, k >= 0.
%C A374996 The cost of a request equals the position of the requested element in the list.
%C A374996 After a request, the requested element is moved n steps closer to the front of the list (or to the front if the element is already less than n steps from the front).
%H A374996 John Tyler Rascoe, <a href="/A374996/b374996.txt">Antidiagonals n = 0..139, flattened</a>
%H A374996 Ran Bachrach and Ran El-Yaniv, <a href="https://dl.acm.org/doi/10.5555/314161.314180">Online list accessing algorithms and their applications: recent empirical evidence</a>, Proceedings of the 8th annual ACM-SIAM symposium on discrete algorithms, SODA ’97, New Orleans, LA, January 5-7, 1997, 53-62.
%H A374996 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-organizing_list">Self-organizing list</a>.
%F A374996 T(n,k) = A374992(k) if n >= A333766(k)-1.
%F A374996 The sum of T(n,k) over all k such that A000120(k) = j (number of requests) and A333766(k) <= m (upper bound on the requested elements) equals m^j * j * (m+1)/2. This is a consequence of the fact that the first m positions of the list are occupied by the elements 1, ..., m, as long as no element larger than m has been requested so far.
%F A374996 T(n,k) = T(n,A025480(k-1)) + A375001(n,k) for n >= 0 and k >= 1.
%e A374996 Array begins:
%e A374996   n\k| 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
%e A374996   ---+-----------------------------------------------
%e A374996    0 | 0  1  2  2  3  3  3  3  4  4  4  4  4  4  4  4
%e A374996    1 | 0  1  2  2  3  4  3  3  4  4  3  5  4  5  4  4
%e A374996    2 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    3 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    4 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    5 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    6 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    7 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    8 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996    9 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996   10 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996   11 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996   12 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996   13 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996   14 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%e A374996   15 | 0  1  2  2  3  4  3  3  4  5  3  5  4  5  4  4
%o A374996 (Python)
%o A374996 def comp(n):
%o A374996     # see A357625
%o A374996     return
%o A374996 def A374996(n,k):
%o A374996     if k<1: return 0
%o A374996     cost,c = 0,comp(k)
%o A374996     m = list(range(1,max(c)+1))
%o A374996     for i in c:
%o A374996         j = m.index(i)
%o A374996         cost += j+1
%o A374996         jp = 0
%o A374996         if j >= n:
%o A374996             jp += j-n
%o A374996         m.insert(jp,m.pop(j))
%o A374996     return cost # _John Tyler Rascoe_, Aug 02 2024
%Y A374996 Cf. A000120, A025480, A029837 (row n=0), A374993 (row n=1), A333766, A374992, A375001.
%K A374996 nonn,tabl
%O A374996 0,4
%A A374996 _Pontus von Brömssen_, Jul 27 2024