cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375002 a(n) = Sum_{i+j+k+m=n, i,j,k,m >= 1} tau(i) * tau(j) * tau(k) * tau(m).

This page as a plain text file.
%I A375002 #11 Jul 27 2024 23:47:57
%S A375002 0,0,0,1,8,32,92,216,440,814,1392,2244,3452,5096,7292,10129,13760,
%T A375002 18284,23868,30662,38820,48556,59948,73424,88796,106886,127052,150732,
%U A375002 176560,206920,239344,277616,317516,365034,413508,471637,529712,600076,668708,753070,833408
%N A375002 a(n) = Sum_{i+j+k+m=n, i,j,k,m >= 1} tau(i) * tau(j) * tau(k) * tau(m).
%C A375002 4-fold convolution of tau (A000005).
%F A375002 G.f.: ( Sum_{k>=1} x^k/(1 - x^k) )^4.
%F A375002 a(n) = Sum_{i=1..n-3} A055507(i)*A055507(n-2-i). - _Chai Wah Wu_, Jul 27 2024
%o A375002 (PARI) my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^k/(1-x^k))^4))
%Y A375002 Column k=4 of A320019.
%Y A375002 Cf. A000005, A055507.
%K A375002 nonn
%O A375002 1,5
%A A375002 _Seiichi Manyama_, Jul 27 2024