This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375007 #9 Aug 18 2024 20:20:44 %S A375007 1,2,3,4,8,24,28,40,60,112,316,508,568,760,796,1212,1228,2616,5296, %T A375007 6220,8016,12456,14620,16888,21772,23116,23356,25656,30312,30712, %U A375007 30808,32716,33720,38328,46072,52816,59112,61728,67960,69808,72972 %N A375007 Numbers t which satisfy the equation: t mod k = floor((t - k)/k) mod k (1 <= k <= t) only for k = 1 and t. %C A375007 Every term greater than 3 is divisible by 4. %C A375007 Let b(z) be the number of elements of this sequence <= z: %C A375007 -------------- %C A375007 z | b(z) %C A375007 -------------- %C A375007 10^2 | 9 %C A375007 10^3 | 15 %C A375007 10^4 | 21 %C A375007 10^5 | 45 %C A375007 10^6 | 106 %C A375007 10^7 | 296 %C A375007 10^8 | 869 %C A375007 -------------- %C A375007 Conjecture: a(n) + 1 is prime for n > 6. Verified for all terms < 10^8. %C A375007 Conjecture: nextprime(u(n)) - u(n), where u(n) = Product_{m=1..n} (a(m+1) - a(m)), is a noncomposite number. Verified for all terms < 10^8. %e A375007 Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i. The triangle begins: %e A375007 i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... %e A375007 ----------------------------------------- %e A375007 1 | 1 %e A375007 2 | 1 1 %e A375007 3 | 1 0 1 %e A375007 4 | 1 0 0 1 %e A375007 5 | 1 1 0 0 1 %e A375007 6 | 1 1 0 0 0 1 %e A375007 7 | 1 0 1 0 0 0 1 %e A375007 8 | 1 0 0 0 0 0 0 1 %e A375007 9 | 1 1 0 1 0 0 0 0 1 %e A375007 10 | 1 1 0 0 0 0 0 0 0 1 %e A375007 11 | 1 0 1 0 1 0 0 0 0 0 1 %e A375007 12 | 1 0 1 0 0 0 0 0 0 0 0 1 %e A375007 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1 %e A375007 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1 %e A375007 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 %e A375007 ... %e A375007 The j-th column has period j^2. %o A375007 (Maxima) %o A375007 (f(i,j):=mod((i-floor((i-j)/j)),j), %o A375007 (n:4, for t:4 thru 100000 step 4 do %o A375007 (for k:2 while f(t,k)#0 and k<t/2+1 do %o A375007 (if k=t/2 then (print(n, "", t), n:n+1))))); %Y A375007 Cf. A000040, A005235, A008578, A051731. %K A375007 nonn %O A375007 1,2 %A A375007 _Lechoslaw Ratajczak_, Jul 27 2024