A375018 Numbers k such that repeated application of the Pisano period eventually gives 24.
2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 32, 34, 36, 37, 38, 39, 42, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 63, 64, 67, 68, 69, 72, 73, 74, 76, 78, 79, 81, 83, 84, 87, 91, 92, 94, 96, 97, 98
Offset: 1
Keywords
Examples
a(1)=2 because 2 is the smallest number with Pisano period trajectory terminating at 24: pi(2)=3, pi(3)=8, pi(8)=12, pi(12)=24.
Links
- B. Benfield and O. Lippard, Fixed points of K-Fibonacci Pisano periods, arXiv:2404.08194 [math.NT], 2024.
- J. Fulton and W. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arith., 2(16):105-110, 1969.
- E. Trojovska, On periodic points of the order of appearance in the Fibonacci sequence, Mathematics, 2020.
Crossrefs
Cf. A001175.
Programs
-
Sage
L=[] for i in range(2,101): a=i y=BinaryRecurrenceSequence(1,1,0,1).period(Integer(i)) while a!=y: a=y y=BinaryRecurrenceSequence(1,1,0,1).period(Integer(a)) if a==24: L.append(i) print(L)
Comments