cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375029 Lexicographically least increasing sequence such that for any prime number p, any run of consecutive multiples of p has length exactly 2.

This page as a plain text file.
%I A375029 #3 Jul 28 2024 12:54:06
%S A375029 1,2,4,5,10,12,15,20,22,33,36,38,57,60,70,77,88,90,105,112,114,171,
%T A375029 172,258,261,290,300,303,404,406,609,612,646,665,700,702,741,760,770,
%U A375029 847,848,954,957,1276,1278,1491,1498,1712,1713,3426,3428,4285,4290,5148
%N A375029 Lexicographically least increasing sequence such that for any prime number p, any run of consecutive multiples of p has length exactly 2.
%C A375029 This sequence is a variant of A280864.
%e A375029 The first terms, alongside their prime factors, are:
%e A375029   n   a(n)  Prime factors
%e A375029   --  ----  --------------------
%e A375029    1     1
%e A375029    2     2   2
%e A375029    3     4   2
%e A375029    4     5       5
%e A375029    5    10   2   5
%e A375029    6    12   2 3
%e A375029    7    15     3 5
%e A375029    8    20   2   5
%e A375029    9    22   2       11
%e A375029   10    33     3     11
%e A375029   11    36   2 3
%e A375029   12    38   2                19
%e A375029   13    57     3              19
%e A375029   14    60   2 3 5
%e A375029   15    70   2   5 7
%e A375029   16    77         7 11
%e A375029   17    88   2       11
%o A375029 (PARI) { p = 0; r = 1; m = 1; for (n = 1, 54, forstep (v = ceil((p+1)/m)*m, oo, m, if (gcd(v, r)==m, print1 (v", "); r = vecprod(factor(p = v)[,1]~); m = r / m; break;););); }
%Y A375029 Cf. A280864.
%K A375029 nonn
%O A375029 1,2
%A A375029 _Rémy Sigrist_, Jul 28 2024