cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375032 The maximum odd exponent in the prime factorization of n, or 0 if no such exponent exists.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 0, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2024

Keywords

Comments

The asymptotic density of the occurrences of 0's is 0 (the asymptotic density of squares).
The asymptotic density of the occurrences of 1's is d(0) = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465, asymptotic density of A335275).
The asymptotic density of the occurrences of 2*k+1, for k = 1, 2, ..., is d(k) = Product_{p prime} (1 - 1/(p^(2*k+2)*(p+1))) - Product_{p prime} (1 - 1/(p^(2*k)*(p+1))).

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[0, Max[Select[FactorInteger[n][[;; , 2]], OddQ]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(e = select(x -> (x % 2), factor(n)[,2])); if(#e == 0, 0, vecmax(e));}

Formula

max(a(n), A375033(n)) = A051903(n).
a(n) = 0 if and only if n is a square (A000290).
a(n) = 1 if and only if n is in A335275 \ A000290.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} (2*k+1) * d(k) = 1.30000522546018852138..., where d(k) is defined in the Comments section above.
a(n) = A051903(A350389(n)). - Amiram Eldar, Aug 17 2024