cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375034 The difference between the maximum odd exponent and the maximum even exponent in the prime factorization of n, where 0 is assigned to each maximum exponent if no such exponent exists.

Original entry on oeis.org

0, 1, 1, -2, 1, 1, 1, 3, -2, 1, 1, -1, 1, 1, 1, -4, 1, -1, 1, -1, 1, 1, 1, 3, -2, 1, 3, -1, 1, 1, 1, 5, 1, 1, 1, -2, 1, 1, 1, 3, 1, 1, 1, -1, -1, 1, 1, -3, -2, -1, 1, -1, 1, 3, 1, 3, 1, 1, 1, -1, 1, 1, -1, -6, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -3
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2024

Keywords

Comments

The indices of high value records are 1, 2, 8, 32, 128, 512, ... (A081294 with offset 1), and the indices of low value records are 1, 4, 16, 64, 256, 1024, ... (A000302 with offset 1).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, OddQ]]] - Max[0, Max[Select[e, EvenQ]]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(e = factor(n)[,2], e1 = select(x -> (x % 2), e), e2 = select(x -> !(x % 2), e)); if(#e1 == 0, 0, vecmax(e1)) - if(#e2 == 0, 0, vecmax(e2));}

Formula

a(n) = A375032(n) - A375033(n).
a(n) = 0 if and only if n = 1.
a(n) <= 0 if and only if n is in A368714.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (-1)^(k+1)*k*d(k) = 0.5741591604302832339078..., where d(k) = Product_{p prime} (1 - 1/(p^(k+1)*(p+1))) - Product_{p prime} (1 - 1/(p^(k-1)*(p+1))) for k >= 2, and d(1) = Product_{p prime} (1 - 1/(p^2*(p+1))).