A375041 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+1. See Comments.
1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 18, 97, 180, 100, 1, 35, 403, 1829, 3160, 1700, 1, 61, 1313, 12307, 50714, 83860, 44200, 1, 98, 3570, 60888, 506073, 1960278, 3147020, 1635400, 1, 148, 8470, 239388, 3550473, 27263928, 101160920, 158986400, 81770000, 1, 213
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 1 + x, 1 + 3 x + 2 x^2, 1 + 8 x + 17 x^2 + 10 x^3. First 5 rows of array: 1 1 1 3 2 1 8 17 10 1 18 97 180 100 1 35 4034 1829 3160 1700
Programs
-
Mathematica
s[n_] := n^2 x; t[n_] := 1 + x; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments