A375042 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = 2x+1. See Comments.
1, 2, 1, 5, 6, 1, 11, 36, 36, 1, 22, 157, 432, 396, 1, 40, 553, 3258, 8172, 7128, 1, 67, 1633, 18189, 96138, 227772, 192456, 1, 105, 4179, 80243, 787320, 3881016, 8847792, 7313328, 1, 156, 9534, 293372, 4879713, 44034336, 206779608, 458550720, 372979728, 1
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 1 + 2x, 1 + 5 x + 6 x^2, 1 + 11 x + 36 x^2 + 36 x^3. First 5 rows of array: 1 2 1 5 6 1 11 36 36 1 22 157 432 396 1 40 553 3258 8172 7128
Programs
-
Mathematica
s[n_] := n^2 x; t[n_] := 1 + 2 x; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments