A375043 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+2. See Comments.
2, 1, 4, 6, 2, 8, 32, 34, 10, 16, 144, 388, 360, 100, 32, 560, 3224, 7316, 6320, 1700, 64, 1952, 21008, 98456, 202856, 167720, 44200, 128, 6272, 114240, 974208, 4048584, 7841112, 6294040, 1635400, 256, 18944, 542080, 7660416, 56807568, 218111424, 404643680
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 2 + x, 4 + 6 x + 2 x^2, 8 + 32 x + 34 x^2 + 10 x^3. First 5 rows of array: 2 1 4 6 2 8 32 34 10 16 144 388 360 100 32 560 3224 7316 6320 1700
Programs
-
Mathematica
s[n_] := n^2 x; t[n_] := x + 2; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments