A375044 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = 2^n x and t(x) = x+1. See Comments.
1, 2, 1, 5, 6, 1, 10, 31, 30, 1, 19, 121, 309, 270, 1, 36, 444, 2366, 5523, 4590, 1, 69, 1632, 17018, 83601, 186849, 151470, 1, 134, 6117, 123098, 1189771, 5620914, 12296655, 9845550, 1, 263, 23403, 912191, 17069413, 159101373, 737394561, 1596114045
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 1 + 2x, 1 + 5 x + 6 x^2, 1 + 10 x + 31 x^2 + 30 x^3. First 5 rows of array: 1 2 1 5 6 1 10 31 30 1 19 121 309 270 1 36 444 2366 5523 4590
Programs
-
Mathematica
s[n_] := 2^n x; t[n_] := x + 1; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments