A375045 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = 2^n and t(x) = 2x+1. See Comments.
2, 2, 6, 10, 4, 30, 62, 40, 8, 270, 618, 484, 152, 16, 4590, 11046, 9464, 3552, 576, 32, 151470, 373698, 334404, 136144, 26112, 2208, 64, 9845550, 24593310, 22483656, 9518168, 1969568, 195744, 8576, 128, 1270075950, 3192228090, 2949578244, 1272810984
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 2 + 2x, 6 + 10 x + 4 x^2, 30 + 62 x + 40 x^2 + 8 x^3. First 5 rows of array: 2 2 6 10 4 30 62 40 8 270 618 484 152 16 4590 11046 9464 3552 576 32
Programs
-
Mathematica
s[n_] := 2^n x; t[n_] := 2x + 1; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments