A375046 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = 2^n and t(x) = x+2. See Comments.
3, 1, 12, 7, 1, 72, 54, 13, 1, 720, 612, 184, 23, 1, 12960, 11736, 3924, 598, 41, 1, 440640, 411984, 145152, 24256, 1992, 75, 1, 29082240, 27631584, 9992016, 1746048, 155728, 6942, 141, 1, 3780691200, 3621188160, 1326593664, 236978256, 21990688, 1058188
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 3 + x, 12 + 7 x + x^2, 72 + 54 x + 13 x^2 + x^3. First 5 rows of array: 3 1 12 7 1 72 54 13 1 720 612 184 23 1 12960 11736 3924 598 41 1
Programs
-
Mathematica
s[n_] := 2^n x; t[n_] := x + 2; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments