A375047 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = x+1 and t(x) = F(n) = n-th Fibonacci number. See Comments.
1, 1, 2, 3, 1, 4, 8, 5, 1, 12, 28, 23, 8, 1, 48, 124, 120, 55, 12, 1, 288, 792, 844, 450, 127, 18, 1, 2592, 7416, 8388, 4894, 1593, 289, 27, 1, 36288, 106416, 124848, 76904, 27196, 5639, 667, 41, 1, 798336, 2377440, 2853072, 1816736, 675216, 151254, 20313
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 1 + x, 2 + 3 x + x^2, 4 + 8 x + 5 x^2 + x^3. First 5 rows of array: 1 1 2 3 1 4 8 5 1 12 28 23 8 1 48 124 120 55 12 1
Programs
-
Mathematica
s[n_] := x + 1; t[n_] := Fibonacci[n]; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments