A375048 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = x+F(n) and t(x) = F(n), where F(n) = n-th Fibonacci number (A000045). See Comments.
0, 1, 1, 2, 1, 2, 5, 4, 1, 16, 32, 24, 8, 1, 162, 297, 216, 78, 14, 1, 3600, 5640, 3649, 1248, 238, 24, 1, 147456, 196608, 110848, 34240, 6256, 676, 40, 1, 12320100, 13667940, 6521589, 1746426, 286843, 29568, 1867, 66, 1, 2058386904, 1878686460, 746158770
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 0 + x, 1 + 2 x + x^2, 2 + 4 x + 4 x^2 + x^3. First 5 rows of array: 0 1 1 2 1 2 5 4 1 16 32 24 8 1 162 297 216 78 14 1
Programs
-
Mathematica
s[n_] := x + Fibonacci[n]; t[n_] := Fibonacci[n]; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments