cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375049 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = x+F(n) and t(x) = x+F(n), and F(n) = n-th Fibonacci number (A000045). See Comments.

Original entry on oeis.org

0, 2, 1, 4, 4, 2, 10, 16, 8, 16, 64, 96, 64, 16, 162, 594, 864, 624, 224, 32, 3600, 11280, 14596, 9984, 3808, 768, 64, 147456, 393216, 443392, 273920, 100096, 21632, 2560, 128, 12320100, 27335880, 26086356, 13971408, 4589488, 946176, 119488, 8448, 256
Offset: 1

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

See A374848 for the definition of obverse convolution and a guide to related sequences and arrays. If n is odd, then the polynomial u(n) is a square. Every T(n,k) except T(2,1) is even.

Examples

			First 3 polynomials in s(x)**t(x) are
  0 + 2x,
  1 + 4 x + 4x^2,
  2 + 10 x + 16 x^2 + 8 x^3.
First 5 rows of array:
  0   2
  1   4   4
  2   10  16   8
  16  64  96  64  16
  162 594 864 624 224 32
		

Crossrefs

Cf. A000045, A000079 (T(n,n+1)), A374848, A375047, A375048.

Programs

  • Mathematica
    s[n_] := x + Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
    Table[Expand[u[n]], {n, 0, 10}]
    Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]]   (* array *)
    Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]]    (* sequence *)