A375049 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = x+F(n) and t(x) = x+F(n), and F(n) = n-th Fibonacci number (A000045). See Comments.
0, 2, 1, 4, 4, 2, 10, 16, 8, 16, 64, 96, 64, 16, 162, 594, 864, 624, 224, 32, 3600, 11280, 14596, 9984, 3808, 768, 64, 147456, 393216, 443392, 273920, 100096, 21632, 2560, 128, 12320100, 27335880, 26086356, 13971408, 4589488, 946176, 119488, 8448, 256
Offset: 1
Examples
First 3 polynomials in s(x)**t(x) are 0 + 2x, 1 + 4 x + 4x^2, 2 + 10 x + 16 x^2 + 8 x^3. First 5 rows of array: 0 2 1 4 4 2 10 16 8 16 64 96 64 16 162 594 864 624 224 32
Programs
-
Mathematica
s[n_] := x + Fibonacci[n]; t[n_] := Fibonacci[n]; u[n_] := Product[s[k] + t[n - k], {k, 0, n}] Table[Expand[u[n]], {n, 0, 10}] Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *) Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
Comments