This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375060 #16 Apr 01 2025 08:52:32 %S A375060 0,3,9,15,21,22,30,33,46,47,51,60,63,69,70,72,90,97,98,105,123,125, %T A375060 129,142,147,153,159,180,182,183,195,199,213,214,219,222,253,259,261, %U A375060 262,270,276,287,297,298,300,309,321,327,330,342,369,370,375,381,385,393,401,402,429,430,431,432,441 %N A375060 Values of k for which A374966(k) = 0. %C A375060 It seems that this sequence grows linearly but this is unproven. %H A375060 Michael De Vlieger, <a href="/A375060/b375060.txt">Table of n, a(n) for n = 1..10000</a> %F A375060 A374966(a(n)) = 0. %F A375060 a(n) ~ c*n, empirically, with c = 7.42... %e A375060 21 is a term; A374966(11) = 21 and by the definition of A374966, A374966(21) = 0. %t A375060 nn = 2^20; c[_] := False; j = 0; c[0] = True; {j}~Join~Reap[Do[If[c[n], k = 0; Sow[n], k = j + n]; Set[{c[k], j}, {True, k}], {n, nn}] ][[-1, 1]] (* _Michael De Vlieger_, Jul 29 2024 *) %o A375060 (Python) %o A375060 from itertools import count, islice %o A375060 def agen(): # generator of terms %o A375060 seen, an = {0}, 0 %o A375060 for n in count(1): %o A375060 if an == 0: yield n-1 %o A375060 an = 0 if n in seen else an + n %o A375060 seen.add(an) %o A375060 print(list(islice(agen(), 64))) # _Michael S. Branicky_, Jul 29 2024 %Y A375060 Cf. A374966. %K A375060 nonn,easy %O A375060 1,2 %A A375060 _Bryle Morga_, Jul 29 2024