cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375061 Expansion of 1 / Sum_{k in Z} x^(2*k) / (1 - x^(5*k+2)).

This page as a plain text file.
%I A375061 #10 Jul 29 2024 06:24:15
%S A375061 1,1,-1,-3,-1,5,5,-5,-13,-2,21,20,-18,-46,-8,66,62,-54,-135,-21,188,
%T A375061 172,-147,-361,-57,479,433,-364,-882,-133,1147,1024,-850,-2039,-309,
%U A375061 2583,2286,-1880,-4466,-662,5573,4889,-3987,-9403,-1392,11541,10059,-8147,-19087,-2794
%N A375061 Expansion of 1 / Sum_{k in Z} x^(2*k) / (1 - x^(5*k+2)).
%F A375061 G.f.: Product_{k>0} ((1-x^(5*k-2)) * (1-x^(5*k-3)))^3 / ((1-x^k) * (1-x^(5*k))).
%o A375061 (PARI) my(N=50, x='x+O('x^N)); Vec(1/sum(k=-N, N, x^(2*k)/(1-x^(5*k+2))))
%o A375061 (PARI) my(N=50, x='x+O('x^N)); Vec(prod(k=1, N, ((1-x^(5*k-2))*(1-x^(5*k-3)))^3/((1-x^k)*(1-x^(5*k)))))
%Y A375061 Convolution inverse of A340455.
%Y A375061 Cf. A375062, A375063, A375064.
%K A375061 sign
%O A375061 0,4
%A A375061 _Seiichi Manyama_, Jul 29 2024