cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375062 Expansion of 1 / Sum_{k in Z} x^k / (1 - x^(5*k+1)).

This page as a plain text file.
%I A375062 #9 Jul 29 2024 06:24:09
%S A375062 1,-2,2,-1,-2,6,-9,9,-4,-7,22,-34,33,-13,-25,71,-103,97,-39,-69,196,
%T A375062 -282,263,-102,-182,499,-703,645,-248,-433,1181,-1650,1499,-568,-988,
%U A375062 2652,-3660,3294,-1240,-2129,5681,-7790,6960,-2595,-4438,11732,-15959,14161,-5252
%N A375062 Expansion of 1 / Sum_{k in Z} x^k / (1 - x^(5*k+1)).
%F A375062 G.f.: Product_{k>0} ((1-x^(5*k-1)) * (1-x^(5*k-4)))^3 / ((1-x^k) * (1-x^(5*k))).
%o A375062 (PARI) my(N=50, x='x+O('x^N)); Vec(1/sum(k=-N, N, x^k/(1-x^(5*k+1))))
%o A375062 (PARI) my(N=50, x='x+O('x^N)); Vec(prod(k=1, N, ((1-x^(5*k-1))*(1-x^(5*k-4)))^3/((1-x^k)*(1-x^(5*k)))))
%Y A375062 Convolution inverse of A340456.
%Y A375062 Cf. A375061, A375063, A375064.
%K A375062 sign
%O A375062 0,2
%A A375062 _Seiichi Manyama_, Jul 29 2024