cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375063 Expansion of 1 / Sum_{k in Z} x^k / (1 - x^(5*k+2)).

This page as a plain text file.
%I A375063 #11 Jul 29 2024 09:59:13
%S A375063 1,-1,0,0,-1,3,-3,1,0,-3,9,-9,3,1,-9,22,-22,9,2,-22,51,-51,22,6,-51,
%T A375063 108,-108,50,13,-108,221,-221,105,29,-220,429,-429,212,57,-426,810,
%U A375063 -810,407,113,-801,1479,-1478,759,208,-1457,2640,-2637,1371,381,-2589,4598,-4590,2419,669
%N A375063 Expansion of 1 / Sum_{k in Z} x^k / (1 - x^(5*k+2)).
%F A375063 G.f.: Product_{k>0} (1-x^(5*k-1)) * (1-x^(5*k-4)) / (1-x^(5*k))^2.
%o A375063 (PARI) my(N=60, x='x+O('x^N)); Vec(1/sum(k=-N, N, x^k/(1-x^(5*k+2))))
%o A375063 (PARI) my(N=60, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(5*k-1))*(1-x^(5*k-4))/(1-x^(5*k))^2))
%Y A375063 Convolution inverse of A340453.
%Y A375063 Cf. A375061, A375062, A375064.
%K A375063 sign
%O A375063 0,6
%A A375063 _Seiichi Manyama_, Jul 29 2024