cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375064 Expansion of 1 / Sum_{k in Z} x^(3*k) / (1 - x^(5*k+1)).

This page as a plain text file.
%I A375064 #10 Jul 29 2024 09:59:07
%S A375064 1,0,-1,-1,0,3,0,-3,-3,1,9,1,-9,-9,3,22,3,-22,-22,9,51,8,-51,-51,21,
%T A375064 108,19,-108,-108,48,221,42,-221,-221,99,429,86,-429,-428,199,810,170,
%U A375064 -809,-807,378,1479,321,-1476,-1470,702,2640,589,-2631,-2618,1258,4599,1050,-4577,-4548,2211
%N A375064 Expansion of 1 / Sum_{k in Z} x^(3*k) / (1 - x^(5*k+1)).
%F A375064 G.f.: Product_{k>0} (1-x^(5*k-2)) * (1-x^(5*k-3)) / (1-x^(5*k))^2.
%o A375064 (PARI) my(N=60, x='x+O('x^N)); Vec(1/sum(k=-N, N, x^(3*k)/(1-x^(5*k+1))))
%o A375064 (PARI) my(N=60, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(5*k-2))*(1-x^(5*k-3))/(1-x^(5*k))^2))
%Y A375064 Convolution inverse of A340454.
%Y A375064 Cf. A375061, A375062, A375063.
%K A375064 sign
%O A375064 0,6
%A A375064 _Seiichi Manyama_, Jul 29 2024