This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375065 #17 Aug 02 2024 09:00:12 %S A375065 0,21,1798,429,10727,431795,8394951,171051143 %N A375065 Starting index of the first length-n (exactly) run of zeros in A374966. %F A375065 a(2) = 21; A374966(21) = A374966(22) = 0. %F A375065 a(3) = 1798; A374966(1798) = A374966(1799) = A374966(1800) = 0. %t A375065 nn = 2^24; c[_] := False; j = m = 0; r = 1; c[0] = True; s = Monitor[Reap[Do[If[c[n], k = 0; r++, k = j + n; If[j == 0, Sow[{r, n - r}]; If[r > m, m = r]; r = 0]]; Set[{c[k], j}, {True, k}], {n, nn}]][[-1, 1]], n]; TakeWhile[Array[s[[FirstPosition[s[[;; , 1]], #][[1]], -1]] &, m], IntegerQ] (* _Michael De Vlieger_, Jul 29 2024 *) %o A375065 (Python) %o A375065 from itertools import count, islice %o A375065 def agen(): # generator of terms %o A375065 seen, an, zcount, zdict, zn = {0}, 0, 0, dict(), 1 %o A375065 for n in count(1): %o A375065 if an == 0: %o A375065 zcount += 1 %o A375065 else: %o A375065 if zcount not in zdict: %o A375065 zdict[zcount] = n-zcount-1 %o A375065 while zn in zdict: yield zdict[zn]; zn += 1 %o A375065 zcount = 0 %o A375065 an = 0 if n in seen else an + n %o A375065 seen.add(an) %o A375065 print(list(islice(agen(), 7))) # _Michael S. Branicky_, Jul 29 2024 %Y A375065 Cf. A374966, A375060. %K A375065 nonn,more %O A375065 1,2 %A A375065 _Bryle Morga_, Jul 29 2024