This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375069 #20 Feb 04 2025 15:22:58 %S A375069 1,3,3,9,7,4,5,9,6,2,1,5,5,6,1,3,5,3,2,3,6,2,7,6,8,2,9,2,4,7,0,6,3,8, %T A375069 1,6,5,2,8,5,9,7,3,7,3,0,9,4,8,0,9,6,8,5,9,7,2,0,9,6,5,1,0,2,7,4,0,3, %U A375069 3,4,9,1,5,4,5,5,9,9,9,8,1,4,5,9,4,2,6,9,0,6 %N A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length. %H A375069 Paolo Xausa, <a href="/A375069/b375069.txt">Table of n, a(n) for n = 0..10000</a> %H A375069 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RegularPolygon.html">Regular Polygon</a>. %H A375069 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sagitta.html">Sagitta</a> %H A375069 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A375069 Equals tan(Pi/12)/2 = A019913/2. %F A375069 Equals 1 - sqrt(3)/2 = 1 - A010527. %F A375069 Equals A152422^2 = (1 - A332133)^2. - _Hugo Pfoertner_, Jul 30 2024 %F A375069 Equals A334843-1/2. - _R. J. Mathar_, Aug 02 2024 %e A375069 0.133974596215561353236276829247063816528597373... %t A375069 First[RealDigits[Tan[Pi/12]/2, 10, 100]] %o A375069 (PARI) tan(Pi/12)/2 \\ _Charles R Greathouse IV_, Feb 04 2025 %o A375069 (PARI) polrootsreal(4*x^2-8*x+1)[1] \\ _Charles R Greathouse IV_, Feb 04 2025 %Y A375069 Essentially the same as A334843. %Y A375069 Cf. A010527 (apothem), A104956 (area). %Y A375069 Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon). %Y A375069 Cf. A010527, A019913, A152422, A332133. %K A375069 nonn,cons,easy %O A375069 0,2 %A A375069 _Paolo Xausa_, Jul 30 2024