A375072 Biquadratefree numbers (A046100) that are not cubefree (A004709).
8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 135, 136, 152, 168, 184, 189, 200, 216, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 392, 408, 424, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540, 552, 568, 584, 594, 600
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Select[Range[600], Max[FactorInteger[#][[;; , 2]]] == 3 &]
-
PARI
is(k) = k > 1 && vecmax(factor(k)[,2]) == 3;
-
Python
from sympy import mobius, integer_nthroot def A375072(n): def f(x): return n+x-sum(mobius(k)*(x//k**4-x//k**3) for k in range(1, integer_nthroot(x,4)[0]+1))+sum(mobius(k)*(x//k**3) for k in range(integer_nthroot(x,4)[0]+1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 05 2024
Comments