This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375073 #8 Jul 30 2024 14:36:22 %S A375073 72,108,200,392,500,675,968,1125,1323,1352,1372,1800,2312,2700,2888, %T A375073 3087,3267,3528,4232,4500,4563,5292,5324,5400,6125,6728,7688,7803, %U A375073 8575,8712,8788,9000,9747,9800,10584,10952,11979,12168,12348,13068,13448,13500,14283,14792 %N A375073 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no other exponents. %C A375073 Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {2, 3}. %C A375073 Number k such that A051904(k) = 2 and A051903(k) = 3. %H A375073 Amiram Eldar, <a href="/A375073/b375073.txt">Table of n, a(n) for n = 1..10000</a> %H A375073 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A375073 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^2 + 1/p^3) - 15/Pi^2 - zeta(3)/zeta(6) + 1 = A330595 - A082020 - A157289 + 1 = 0.047550294197921818806... . %t A375073 Select[Range[15000], Union[FactorInteger[#][[;; , 2]]] == {2, 3} &] %o A375073 (PARI) is(k) = Set(factor(k)[,2]) == [2, 3]; %Y A375073 Equals A338325 \ (A062503 UNION A062838). %Y A375073 Subsequence of A001694 and A046100. %Y A375073 A143610 is a subsequence. %Y A375073 Cf. A051903, A051904, A136568. %Y A375073 Cf. A082020, A157289, A330595. %K A375073 nonn,easy %O A375073 1,1 %A A375073 _Amiram Eldar_, Jul 29 2024