cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375073 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no other exponents.

This page as a plain text file.
%I A375073 #8 Jul 30 2024 14:36:22
%S A375073 72,108,200,392,500,675,968,1125,1323,1352,1372,1800,2312,2700,2888,
%T A375073 3087,3267,3528,4232,4500,4563,5292,5324,5400,6125,6728,7688,7803,
%U A375073 8575,8712,8788,9000,9747,9800,10584,10952,11979,12168,12348,13068,13448,13500,14283,14792
%N A375073 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no other exponents.
%C A375073 Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {2, 3}.
%C A375073 Number k such that A051904(k) = 2 and A051903(k) = 3.
%H A375073 Amiram Eldar, <a href="/A375073/b375073.txt">Table of n, a(n) for n = 1..10000</a>
%H A375073 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A375073 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^2 + 1/p^3) - 15/Pi^2 - zeta(3)/zeta(6) + 1 = A330595 - A082020 - A157289 + 1 = 0.047550294197921818806... .
%t A375073 Select[Range[15000], Union[FactorInteger[#][[;; , 2]]] == {2, 3} &]
%o A375073 (PARI) is(k) = Set(factor(k)[,2]) == [2, 3];
%Y A375073 Equals A338325 \ (A062503 UNION A062838).
%Y A375073 Subsequence of A001694 and A046100.
%Y A375073 A143610 is a subsequence.
%Y A375073 Cf. A051903, A051904, A136568.
%Y A375073 Cf. A082020, A157289, A330595.
%K A375073 nonn,easy
%O A375073 1,1
%A A375073 _Amiram Eldar_, Jul 29 2024