This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375074 #8 Jul 30 2024 14:36:33 %S A375074 72,108,200,360,392,500,504,540,600,675,756,792,936,968,1125,1176, %T A375074 1188,1224,1323,1350,1352,1368,1372,1400,1404,1500,1656,1800,1836, %U A375074 1960,2052,2088,2200,2232,2250,2312,2484,2520,2600,2646,2664,2700,2888,2904,2952,3087 %N A375074 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no higher exponents. %C A375074 Numbers whose powerful part (A057521) is a term of A375073. %C A375074 The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(3) + 1/zeta(2) - zeta(6)/(zeta(2) * zeta(3)) * c = A215267 - A088453 + A059956 - A068468 * c = 0.0156712080080470088619..., where c = Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5). %H A375074 Amiram Eldar, <a href="/A375074/b375074.txt">Table of n, a(n) for n = 1..10000</a> %H A375074 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A375074 A051903(a(n)) = 3. %t A375074 Select[Range[3000], Union[Select[FactorInteger[#][[;; , 2]], # > 1 &]] == {2, 3} &] %o A375074 (PARI) is(k) = Set(select(x -> x > 1, factor(k)[,2])) == [2, 3]; %Y A375074 Equals A046100 \ (A004709 UNION A336591). %Y A375074 Disjoint union of A375073 and A375075. %Y A375074 Cf. A051903, A057521. %Y A375074 Cf. A002117, A013661, A013662, A013664, A059956, A068468, A088453, A215267. %K A375074 nonn,easy %O A375074 1,1 %A A375074 _Amiram Eldar_, Jul 29 2024