cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375089 Number of positive integers with Pisano period equal to 2n.

This page as a plain text file.
%I A375089 #44 Aug 29 2024 12:00:58
%S A375089 0,0,1,1,1,1,1,2,3,2,1,10,1,2,8,4,1,9,1,11,8,2,3,55,6,2,6,11,3,49,1,8,
%T A375089 8,2,13,133,1,6,20,46,1,49,3,27,81,4,1,260,2,38,20,11,1,106,21,78,20,
%U A375089 4,7,874,1,6,81,48,29,49,3,27,42,108,1,1319,3,14,174,23,13,101,1,444
%N A375089 Number of positive integers with Pisano period equal to 2n.
%C A375089 a(n) = 0 for all odd values n > 3 since the Pisano period of m is always even except when m=1 or 2.
%C A375089 The Pisano period of m divides n if and only if F_m = 0 (mod n) and F_{m+1} = 1 (mod n), hence n | gcd(F_m,F_{m+1}-1).
%C A375089 Conjecture: If n is of the form 12*5^j (i.e. 2n is of the form 24*5^j which has the unique property that pi(2n)=2n), then a(n) > a(m) for all m < n.
%C A375089 Conjecture: Every natural number appears on this list.
%H A375089 Chai Wah Wu, <a href="/A375089/b375089.txt">Table of n, a(n) for n = 1..314</a> (terms 1..239 from Oliver Lippard)
%H A375089 B. Benfield and O. Lippard, <a href="https://arxiv.org/abs/2404.08194">Fixed points of K-Fibonacci Pisano periods</a>, arXiv:2404.08194 [math.NT], 2024.
%H A375089 J. D. Fulton and W. L. Morris, <a href="https://eudml.org/doc/204918">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica 16 (1969), 105-110.
%e A375089 a(9) = 3 because the Pisano periods of 76, 38, and 19, but no others, are 2*9=18.
%e A375089 There are no numbers with Pisano period 2 or 4, so a(1) = a(2) = 0.
%o A375089 (Sage)
%o A375089 def a(n):
%o A375089     num=0
%o A375089     if n<3:
%o A375089         return 0
%o A375089     x=gcd(fibonacci(2*n),fibonacci(2*n+1)-1)
%o A375089     for d in divisors(x):
%o A375089         if BinaryRecurrenceSequence(1,1,0,1).period(d)==2*n:
%o A375089             num+=1
%o A375089     return num
%o A375089 for i in range(1,101):
%o A375089     print(a(i))
%o A375089 (Python)
%o A375089 from functools import lru_cache
%o A375089 from math import gcd, lcm
%o A375089 from sympy import factorint, divisors, fibonacci
%o A375089 def A375089(n):
%o A375089     @lru_cache(maxsize=None)
%o A375089     def A001175(n):
%o A375089         if n == 1:
%o A375089             return 1
%o A375089         f = factorint(n).items()
%o A375089         if len(f) > 1:
%o A375089             return lcm(*(A001175(a**b) for a,b in f))
%o A375089         else:
%o A375089             k,x = 1, (1,1)
%o A375089             while x != (0,1):
%o A375089                 k += 1
%o A375089                 x = (x[1], (x[0]+x[1]) % n)
%o A375089             return k
%o A375089     a, b = fibonacci((m:=n<<1)+1), fibonacci(m)
%o A375089     return sum(1 for d in divisors(gcd(a-1,b),generator=True) if A001175(d)==m) # _Chai Wah Wu_, Aug 28 2024
%Y A375089 Cf. A000045, A001175.
%Y A375089 See A375519 for the "equal to n" version.
%K A375089 nonn
%O A375089 1,8
%A A375089 _Oliver Lippard_ and _Brennan G. Benfield_, Jul 29 2024