This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375100 #12 Jul 31 2024 09:11:07 %S A375100 1,2,1,5,2,1,11,6,3,1,24,18,8,4,1,53,47,26,12,5,1,118,118,79,38,17,6, %T A375100 1,261,297,220,122,56,23,7,1,577,740,593,370,185,80,30,8,1,1276,1816, %U A375100 1583,1068,589,274,111,38,9,1,2823,4408,4166,3008,1795,908,395,150,47,10,1 %N A375100 Triangle read by rows: T(n,k) is the number of n-color compositions of n with k pairs of adjacent parts that are the same color. %F A375100 G.f.: A(x,y) = 1/(1 - Sum_{i>0} (x^i)/(1 - (y-1)*x^i - x)). %e A375100 Triangle begins: %e A375100 k=0 1 2 3 4 5 6 7 8 %e A375100 n=1: 1; %e A375100 n=2: 2, 1; %e A375100 n=3: 5, 2, 1; %e A375100 n=4: 11, 6, 3, 1; %e A375100 n=5: 24, 18, 8, 4, 1; %e A375100 n=6: 53, 47, 26, 12, 5, 1; %e A375100 n=7: 118, 118, 79, 38, 17, 6, 1; %e A375100 n=8: 261, 297, 220, 122, 56, 23, 7, 1; %e A375100 n=9: 577, 740, 593, 370, 185, 80, 30, 8, 1; %e A375100 ... %e A375100 Row n = 3 counts: %e A375100 T(3,0) = 5: (1,2_2), (2_2,1), (3_1), (3_2), (3_3). %e A375100 T(3,1) = 2: (1,2_1), (2_1,1). %e A375100 T(3,2) = 1: (1,1,1). %o A375100 (PARI) %o A375100 T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= 1/(1-sum(i=1,N, x^i/(1-(x^i)*(y-1)-x)))); for(n=1, N-1, print(Vecrev(polcoeff(h, n))))} %o A375100 T_xy(10) %Y A375100 Cf. A088305 (row sums), A242551 (column k=0). %Y A375100 Cf. A003242, A372015, A374925. %K A375100 nonn,easy,tabl %O A375100 1,2 %A A375100 _John Tyler Rascoe_, Jul 29 2024