This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375106 #16 Aug 01 2024 14:13:07 %S A375106 1,1,1,1,1,1,2,0,1,1,1,1,2,1,1,0,1,1,2,1,0,2,1,0,2,1,1,1,1,1,2,0,1,0, %T A375106 1,1,3,1,1,0,1,2,1,1,1,1,0,0,2,1,1,2,1,1,2,0,1,1,1,0,2,2,1,0,0,1,3,1, %U A375106 1,0,2,0,1,1,1,1,1,1,2,0,1,3,1,1,2,0,0,0,1,1,2,1,1,1,1,0 %N A375106 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+3)). %H A375106 R. P. Agarwal, <a href="https://www.ias.ac.in/describe/article/pmsc/103/03/0269-0293">Lambert series and Ramanujan</a>, Prod. Indian Acad. Sci. (Math. Sci.), v. 103, n. 3, 1993, pp. 269-293. see p. 286. %F A375106 G.f.: Product_{k>0} (1-x^(7*k))^2 / ((1-x^(7*k-1)) * (1-x^(7*k-6))). %F A375106 G.f.: Sum_{k in Z} x^(3*k) / (1 - x^(7*k+1)). %o A375106 (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+3)))) %o A375106 (PARI) my(N=100, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2/((1-x^(7*k-1))*(1-x^(7*k-6))))) %Y A375106 Cf. A374900, A375148, A375149, A375150. %Y A375106 Cf. A375107, A375108. %K A375106 nonn %O A375106 0,7 %A A375106 _Seiichi Manyama_, Jul 30 2024