cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375115 Lexicographically earliest sequence of positive integers such that the pairs (a(n) AND a(n+1), a(n+1)) are all distinct (where AND denotes the bitwise AND operator).

This page as a plain text file.
%I A375115 #10 Aug 04 2024 12:42:49
%S A375115 0,0,1,1,2,2,3,3,4,3,5,3,6,4,5,5,6,6,7,7,8,5,7,9,6,9,7,10,7,11,7,12,7,
%T A375115 13,8,7,14,9,9,10,10,11,11,12,11,13,11,14,12,13,13,14,14,15,15,16,10,
%U A375115 13,15,17,11,15,18,11,19,12,15,20,11,20,13,18,13,19
%N A375115 Lexicographically earliest sequence of positive integers such that the pairs (a(n) AND a(n+1), a(n+1)) are all distinct (where AND denotes the bitwise AND operator).
%C A375115 The value 0 appears twice; for any v > 0, the value v appears A001316(v) times.
%H A375115 Rémy Sigrist, <a href="/A375115/b375115.txt">Table of n, a(n) for n = 0..10000</a>
%H A375115 Rémy Sigrist, <a href="/A375115/a375115.gp.txt">PARI program</a>
%e A375115 The first terms, alongside the corresponding pairs, are:
%e A375115   n   a(n)  (a(n) AND a(n+1), a(n+1))
%e A375115   --  ----  -------------------------
%e A375115    0     0  (0, 0)
%e A375115    1     0  (0, 1)
%e A375115    2     1  (1, 1)
%e A375115    3     1  (0, 2)
%e A375115    4     2  (2, 2)
%e A375115    5     2  (2, 3)
%e A375115    6     3  (3, 3)
%e A375115    7     3  (0, 4)
%e A375115    8     4  (0, 3)
%e A375115    9     3  (1, 5)
%e A375115   10     5  (1, 3)
%e A375115   11     3  (2, 6)
%e A375115   12     6  (4, 4)
%e A375115   13     4  (4, 5)
%e A375115   14     5  (5, 5)
%e A375115   15     5  (4, 6)
%o A375115 (PARI) \\ See Links section.
%Y A375115 See A375110 for similar sequences.
%Y A375115 Cf. A001316.
%K A375115 nonn,base
%O A375115 0,5
%A A375115 _Rémy Sigrist_, Jul 30 2024