This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375120 #14 Nov 04 2024 05:50:44 %S A375120 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,4,1,1,1,2,1,3,1,3,1,1, %T A375120 1,6,1,1,1,4,1,3,1,2,2,1,1,9,1,2,1,2,1,4,1,4,1,1,1,9,1,1,2,6,1,3,1,2, %U A375120 1,3,1,15,1,1,2,2,1,3,1,9,2,1,1,9,1,1,1 %N A375120 Number of complete binary unordered tree-factorizations of n. %C A375120 For prime n, the factorization tree is a single vertex in just one way so that a(n) = 1. %C A375120 For composite n, the two subtrees at n are a split of n into two factors n = d * (n/d), without order, so that a(n) = Sum_{d|n, 2 <= d <= n/d} a(d)*a(n/d). %C A375120 a(1) = 1 is by convention, reckoning 1 as having a single empty factorization. %C A375120 _Greg Martin_ observed: if p is prime then a(p^k) equals the k-th 'half-Catalan number' A000992. - _Peter Luschny_, Nov 04 2024 %e A375120 For n = 4, the a(4) = 1 sole factor tree is %e A375120 4 4 = 2*2 %e A375120 / \ %e A375120 2 2 %e A375120 For n=12, the a(12) = 2 factor trees are %e A375120 12 12 %e A375120 / \ / \ %e A375120 2 6 3 4 %e A375120 / \ / \ %e A375120 2 3 2 2 %e A375120 The tree structures are the same but the values are not the same and are therefore distinct factorizations. %o A375120 (SageMath) %o A375120 @cached_function %o A375120 def a(n): %o A375120 if is_prime(n) or n == 1: return 1 %o A375120 T = [t for t in divisors(n) if 1 < t <= n/t] %o A375120 return sum(a(d)*a(n//d) for d in T) %o A375120 print([a(n) for n in range(1, 88)]) # _Peter Luschny_, Nov 03 2024 %Y A375120 Cf. A281119, A292505, A007964 (a(n)=1), A058080 (a(n)>1), A000992. %K A375120 nonn %O A375120 1,12 %A A375120 _Baron Kurt Hannsz_, Jul 30 2024