cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375121 Number of odd reduced Latin squares of order n.

This page as a plain text file.
%I A375121 #35 Sep 03 2024 01:42:30
%S A375121 0,0,0,0,16,3552,8332800
%N A375121 Number of odd reduced Latin squares of order n.
%H A375121 Carolin Hannusch, <a href="https://arato.inf.unideb.hu/hannusch.carolin/evenlatinsquares.txt">Python program for latin squares</a>
%F A375121 a(n) + A375141(n) = A000315(n).
%e A375121 For n=5 the 16 squares are:
%e A375121 [[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 1, 2],[4, 5, 2, 3, 1],[5, 3, 1, 2, 4]];
%e A375121 [[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 2, 1],[4, 5, 1, 3, 2],[5, 3, 2, 1, 4]];
%e A375121 [[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 1, 2],[4, 3, 2, 5, 1],[5, 4, 1, 2, 3]];
%e A375121 [[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 2, 1],[4, 3, 1, 5, 2],[5, 4, 2, 1, 3]];
%e A375121 [[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 4, 5, 2, 1],[4, 5, 2, 1, 3],[5, 1, 4, 3, 2]];
%e A375121 [[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 5, 4, 1, 2],[4, 1, 5, 2, 3],[5, 4, 2, 3, 1]];
%e A375121 [[1, 2, 3, 4, 5],[2, 3, 4, 5, 1],[3, 1, 5, 2, 4],[4, 5, 2, 1, 3],[5, 4, 1, 3, 2]];
%e A375121 [[1, 2, 3, 4, 5],[2, 3, 5, 1, 4],[3, 1, 4, 5, 2],[4, 5, 1, 2, 3],[5, 4, 2, 3, 1]];
%e A375121 [[1, 2, 3, 4, 5],[2, 4, 1, 5, 3],[3, 5, 2, 1, 4],[4, 1, 5, 3, 2],[5, 3, 4, 2, 1]];
%e A375121 [[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 1, 2, 5, 4],[4, 5, 1, 3, 2],[5, 3, 4, 2, 1]];
%e A375121 [[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 5, 1, 2, 4],[4, 3, 2, 5, 1],[5, 1, 4, 3, 2]];
%e A375121 [[1, 2, 3, 4, 5],[2, 4, 5, 3, 1],[3, 5, 1, 2, 4],[4, 1, 2, 5, 3],[5, 3, 4, 1, 2]];
%e A375121 [[1, 2, 3, 4, 5],[2, 5, 1, 3, 4],[3, 4, 2, 5, 1],[4, 3, 5, 1, 2],[5, 1, 4, 2, 3]];
%e A375121 [[1, 2, 3, 4, 5],[2, 5, 4, 1, 3],[3, 4, 1, 5, 2],[4, 3, 5, 2, 1],[5, 1, 2, 3, 4]];
%e A375121 [[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 1, 2, 5, 4],[4, 3, 5, 1, 2],[5, 4, 1, 2, 3]];
%e A375121 [[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 4, 1, 5, 2],[4, 1, 5, 2, 3],[5, 3, 2, 1, 4]].
%Y A375121 Cf. A114629, A375141.
%K A375121 nonn,more,hard
%O A375121 1,5
%A A375121 _Carolin Hannusch_, Jul 31 2024