This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375121 #35 Sep 03 2024 01:42:30 %S A375121 0,0,0,0,16,3552,8332800 %N A375121 Number of odd reduced Latin squares of order n. %H A375121 Carolin Hannusch, <a href="https://arato.inf.unideb.hu/hannusch.carolin/evenlatinsquares.txt">Python program for latin squares</a> %F A375121 a(n) + A375141(n) = A000315(n). %e A375121 For n=5 the 16 squares are: %e A375121 [[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 1, 2],[4, 5, 2, 3, 1],[5, 3, 1, 2, 4]]; %e A375121 [[1, 2, 3, 4, 5],[2, 1, 4, 5, 3],[3, 4, 5, 2, 1],[4, 5, 1, 3, 2],[5, 3, 2, 1, 4]]; %e A375121 [[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 1, 2],[4, 3, 2, 5, 1],[5, 4, 1, 2, 3]]; %e A375121 [[1, 2, 3, 4, 5],[2, 1, 5, 3, 4],[3, 5, 4, 2, 1],[4, 3, 1, 5, 2],[5, 4, 2, 1, 3]]; %e A375121 [[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 4, 5, 2, 1],[4, 5, 2, 1, 3],[5, 1, 4, 3, 2]]; %e A375121 [[1, 2, 3, 4, 5],[2, 3, 1, 5, 4],[3, 5, 4, 1, 2],[4, 1, 5, 2, 3],[5, 4, 2, 3, 1]]; %e A375121 [[1, 2, 3, 4, 5],[2, 3, 4, 5, 1],[3, 1, 5, 2, 4],[4, 5, 2, 1, 3],[5, 4, 1, 3, 2]]; %e A375121 [[1, 2, 3, 4, 5],[2, 3, 5, 1, 4],[3, 1, 4, 5, 2],[4, 5, 1, 2, 3],[5, 4, 2, 3, 1]]; %e A375121 [[1, 2, 3, 4, 5],[2, 4, 1, 5, 3],[3, 5, 2, 1, 4],[4, 1, 5, 3, 2],[5, 3, 4, 2, 1]]; %e A375121 [[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 1, 2, 5, 4],[4, 5, 1, 3, 2],[5, 3, 4, 2, 1]]; %e A375121 [[1, 2, 3, 4, 5],[2, 4, 5, 1, 3],[3, 5, 1, 2, 4],[4, 3, 2, 5, 1],[5, 1, 4, 3, 2]]; %e A375121 [[1, 2, 3, 4, 5],[2, 4, 5, 3, 1],[3, 5, 1, 2, 4],[4, 1, 2, 5, 3],[5, 3, 4, 1, 2]]; %e A375121 [[1, 2, 3, 4, 5],[2, 5, 1, 3, 4],[3, 4, 2, 5, 1],[4, 3, 5, 1, 2],[5, 1, 4, 2, 3]]; %e A375121 [[1, 2, 3, 4, 5],[2, 5, 4, 1, 3],[3, 4, 1, 5, 2],[4, 3, 5, 2, 1],[5, 1, 2, 3, 4]]; %e A375121 [[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 1, 2, 5, 4],[4, 3, 5, 1, 2],[5, 4, 1, 2, 3]]; %e A375121 [[1, 2, 3, 4, 5],[2, 5, 4, 3, 1],[3, 4, 1, 5, 2],[4, 1, 5, 2, 3],[5, 3, 2, 1, 4]]. %Y A375121 Cf. A114629, A375141. %K A375121 nonn,more,hard %O A375121 1,5 %A A375121 _Carolin Hannusch_, Jul 31 2024