cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375142 Numbers whose powerful part (A057521) is a power of a squarefree number that is larger than 1 (A072777).

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Subsequence of A013929 and first differs from it at n = 27: A013929(27) = 72 = 2^3 * 3^2 is not a term of this sequence.
Numbers whose prime factorization has one distinct exponent that does not equal 1.
Numbers that are a product of a squarefree number (A005117) and a power of a different squarefree number that is not squarefree.
The asymptotic density of this sequence is Sum_{k>=2} (d(k)-1)/zeta(2) = 0.36113984820338109927..., where d(k) = zeta(k) * Product_{p prime} (1 + Sum_{i=k+1..2*k-1} (-1)^i/p^i), if k is even, and d(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i) if k is odd > 1.

Examples

			12 = 2^2 * 3 is a term because its powerful part, 4 = 2^2, is a power of a squarefree number, 2, that is larger than 1.
		

Crossrefs

Subsequence of A013929.
Subsequences: A067259, A072777, A190641, A336591.

Programs

  • Mathematica
    q[n_] := Count[Union[FactorInteger[n][[;; , 2]]], _?(# > 1 &)] == 1; Select[Range[200], q]
  • PARI
    is(k) = {my(e = select(x -> (x > 1), Set(factor(k)[,2]))); #e == 1;}