cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375148 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+2)).

This page as a plain text file.
%I A375148 #15 Aug 01 2024 14:13:03
%S A375148 1,1,2,1,1,1,2,1,2,0,2,1,2,1,1,1,1,1,3,1,2,1,0,1,1,1,3,1,2,0,2,1,2,1,
%T A375148 1,0,2,2,2,0,1,1,3,1,1,1,1,1,1,1,4,1,1,1,0,2,2,1,1,0,2,0,2,1,2,1,4,1,
%U A375148 2,0,0,1,3,1,0,1,1,1,2,1,2,1,3,1,1,1,2,0,1,0,3,2,1,1,0,2,2,1,4,0,0
%N A375148 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+2)).
%F A375148 G.f.: Product_{k>0} (1-x^(7*k))^3 * ((1-x^(7*k-3)) * (1-x^(7*k-4)))^2 / (1-x^k).
%F A375148 G.f.: Sum_{k in Z} x^(2*k) / (1 - x^(7*k+1)).
%o A375148 (PARI) my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+2))))
%o A375148 (PARI) my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^3*((1-x^(7*k-3))*(1-x^(7*k-4)))^2/(1-x^k)))
%Y A375148 Cf. A374900, A375106, A375149, A375150.
%Y A375148 Cf. A033687, A340453.
%K A375148 nonn
%O A375148 0,3
%A A375148 _Seiichi Manyama_, Aug 01 2024