This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375148 #15 Aug 01 2024 14:13:03 %S A375148 1,1,2,1,1,1,2,1,2,0,2,1,2,1,1,1,1,1,3,1,2,1,0,1,1,1,3,1,2,0,2,1,2,1, %T A375148 1,0,2,2,2,0,1,1,3,1,1,1,1,1,1,1,4,1,1,1,0,2,2,1,1,0,2,0,2,1,2,1,4,1, %U A375148 2,0,0,1,3,1,0,1,1,1,2,1,2,1,3,1,1,1,2,0,1,0,3,2,1,1,0,2,2,1,4,0,0 %N A375148 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+2)). %F A375148 G.f.: Product_{k>0} (1-x^(7*k))^3 * ((1-x^(7*k-3)) * (1-x^(7*k-4)))^2 / (1-x^k). %F A375148 G.f.: Sum_{k in Z} x^(2*k) / (1 - x^(7*k+1)). %o A375148 (PARI) my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+2)))) %o A375148 (PARI) my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^3*((1-x^(7*k-3))*(1-x^(7*k-4)))^2/(1-x^k))) %Y A375148 Cf. A374900, A375106, A375149, A375150. %Y A375148 Cf. A033687, A340453. %K A375148 nonn %O A375148 0,3 %A A375148 _Seiichi Manyama_, Aug 01 2024