This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A375149 #11 Aug 01 2024 14:13:12 %S A375149 1,1,0,1,2,0,1,1,0,1,1,0,3,1,-1,1,2,0,0,1,1,1,1,1,2,1,-1,1,2,0,1,0,0, %T A375149 1,2,0,3,1,-1,1,2,0,1,1,0,2,1,0,0,1,-1,1,3,1,1,1,2,0,0,0,3,1,-1,1,2, %U A375149 -1,1,2,0,1,0,0,2,1,0,1,3,0,2,1,0,1,0,0,3,1,-1,1,0,1,1,1,1,1,1,0,1,1,-1,0,5 %N A375149 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+4)). %F A375149 G.f.: Product_{k>0} (1-x^(7*k))^3 * ((1-x^(7*k-2)) * (1-x^(7*k-5)))^2 / (1-x^k). %F A375149 G.f.: Sum_{k in Z} x^(4*k) / (1 - x^(7*k+1)). %o A375149 (PARI) my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+4)))) %o A375149 (PARI) my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^3*((1-x^(7*k-2))*(1-x^(7*k-5)))^2/(1-x^k))) %Y A375149 Cf. A374900, A375106, A375148, A375150. %K A375149 sign %O A375149 0,5 %A A375149 _Seiichi Manyama_, Aug 01 2024